An incinerator is a furnace for burning waste. Modern incinerators include pollution mitigation equipment such as flue gas cleaning. There are various types of incinerator plant design: moving grate, fixed grate, rotary-kiln, and fluidised bed.

Burn pile

The burn pile, or burn pit is one of the simplest and earliest forms of waste disposal, essentially consisting of a mound of combustible materials piled on bare ground and set on fire. Indiscriminate piles of household waste are strongly discouraged and may be illegal in urban areas, but are permitted in certain rural situations such as clearing forested land for farming, where the stumps are uprooted and burned. Rural burn piles of organic yard waste are also sometimes permitted, though not asphalt shingles, plastics, or other petroleum products.

Burn piles can and have spread uncontrolled fires, for example if wind blows burning material off the pile into surrounding combustible grasses or onto buildings. As interior structures of the pile are consumed, the pile can shift and collapse, spreading the burn area. Even in a situation of no wind, small lightweight ignited embers can lift off the pile via convection, and waft through the air into grasses or onto buildings, igniting them.

Burn pits were used extensively by the U.S. military in Iraq and Afghanistan. Initial use was on an emergency basis but use continued for extended periods of time, sometimes years. There have be complaints by military personnel and veterans that toxic chemicals from the burn pits resulted in respiratory problems.

Burn barrel

The burn barrel is a somewhat more controlled form of private waste incineration, containing the burning material inside a metal barrel, with a metal grating over the exhaust. The barrel prevents the spread of burning material in windy conditions, and as the combustibles are reduced they can only settle down into the barrel. The exhaust grating helps to prevent the spread of burning embers. Typically steel 55-gallon drums are used as burn barrels, with air vent holes cut or drilled around the base for air intake. Over time the very high heat of incineration causes the metal to oxidize and rust, and eventually the barrel itself is consumed by the heat and must be replaced.

Private burning of dry cellulosic/paper products is generally clean-burning, producing no visible smoke, but the large amount of plastics in household waste can cause private burning to create a public nuisance and health hazard, generating acrid odors and fumes that make eyes burn and water. The temperatures in a burn barrel are not regulated, and usually do not reach high enough or for enough time to completely break down chemicals such as dioxin in plastics and other waste chemicals. Therefore plastics and other petroleum products must be separated and sent to commercial waste disposal facilities.

Private rural incineration is typically only permitted so long as it is not a nuisance to others, does not pose a risk of fire such as in dry conditions, and the fire is clean-burning, producing no visible smoke. People intending to burn waste may be required to contact a state agency in advance to check current fire risk and conditions, and to alert officials of the controlled fire that will occur.

Moving grate

The typical incineration plant for municipal solid waste is a moving grate incinerator. The moving grate enables the movement of waste through the combustion chamber to be optimised to allow a more efficient and complete combustion. A single moving grate boiler can handle up to 35 metric tons (39 short tons) of waste per hour, and can operate 8,000 hours per year with only one scheduled stop for inspection and maintenance of about one month's duration. Moving grate incinerators are sometimes referred to as Municipal Solid Waste Incinerators (MSWIs).

The waste is introduced by a waste crane through the "throat" at one end of the grate, from where it moves down over the descending grate to the ash pit in the other end. Here the ash is removed through a water lock.

Part of the combustion air (primary combustion air) is supplied through the grate from below. This air flow also has the purpose of cooling the grate itself. Cooling is important for the mechanical strength of the grate, and many moving grates are also water cooled internally.

Secondary combustion air is supplied into the boiler at high speed through nozzles over the grate. It facilitates complete combustion of the flue gases by introducing turbulence for better mixing and by ensuring a surplus of oxygen. In multiple/stepped hearth incinerators, the secondary combustion air is introduced in a separate chamber downstream the primary combustion chamber.

According to the European Waste Incineration Directive, incineration plants must be designed to ensure that the flue gases reach a temperature of at least 850 °C (1,560 °F) for 2 seconds in order to ensure proper breakdown of toxic organic substances. In order to comply with this at all times, it is required to install backup auxiliary burners (often fueled by oil), which are fired into the boiler in case the heating value of the waste becomes too low to reach this temperature alone.

The flue gases are then cooled in the superheaters, where the heat is transferred to steam, heating the steam to typically 400 °C (752 °F) at a pressure of 40 bars (580 psi) for the electricity generation in the turbine. At this point, the flue gas has a temperature of around 200 °C (392 °F), and is passed to the flue gas cleaning system.

In Scandinavia scheduled maintenance is always performed during summer, where the demand for district heating is low. Often incineration plants consist of several separate 'boiler lines' (boilers and flue gas treatment plants), so that waste can continue to be received at one boiler line while the others are subject to revision.

Fixed grate

The older and simpler kind of incinerator was a brick-lined cell with a fixed metal grate over a lower ash pit, with one opening in the top or side for loading and another opening in the side for removing incombustible solids called clinkers. Many small incinerators formerly found in apartment houses have now been replaced by waste compactors.

Rotary-kiln

The rotary-kiln incinerator is used by municipalities and by large industrial plants. This design of incinerator has 2 chambers: a primary chamber and secondary chamber. The primary chamber in a rotary kiln incinerator consist of an inclined refractory lined cylindrical tube. Movement of the cylinder on its axis facilitates movement of waste. In the primary chamber, there is conversion of solid fraction to gases, through volatilization, destructive distillation and partial combustion reactions. The secondary chamber is necessary to complete gas phase combustion reactions.

The clinkers spill out at the end of the cylinder. A tall flue gas stack, fan, or steam jet supplies the needed draft. Ash drops through the grate, but many particles are carried along with the hot gases. The particles and any combustible gases may be combusted in an "afterburner".

Fluidized bed

A strong airflow is forced through a sandbed. The air seeps through the sand until a point is reached where the sand particles separate to let the air through and mixing and churning occurs, thus a fluidised bed is created and fuel and waste can now be introduced.

The sand with the pre-treated waste and/or fuel is kept suspended on pumped air currents and takes on a fluid-like character. The bed is thereby violently mixed and agitated keeping small inert particles and air in a fluid-like state. This allows all of the mass of waste, fuel and sand to be fully circulated through the furnace.

Specialized incineration

Furniture factory sawdust incinerators need much attention as these have to handle resin powder and many flammable substances. Controlled combustion, burn back prevention systems are essential as dust when suspended resembles the fire catch phenomenon of any liquid petroleum gas.

Use of heat

The heat produced by an incinerator can be used to generate steam which may then be used to drive a turbine in order to produce electricity. The typical amount of net energy that can be produced per tonne municipal waste is about 2/3 MWh of electricity and 2 MWh of district heating. Thus, incinerating about 600 metric tons (660 short tons) per day of waste will produce about 400 MWh of electrical energy per day (17 MW of electrical power continuously for 24 hours) and 1200 MWh of district heating energy each day.

Pollution

Incineration has a number of outputs such as the ash and the emission to the atmosphere of flue gas. Before the flue gas cleaning system, the flue gases may contain significant amounts of particulate matter, heavy metals, dioxins, furans, sulfur dioxide, and hydrochloric acid.

In a study from 1994, Delaware Solid Waste Authority found that, for same amount of produced energy, incineration plants emitted fewer particles, hydrocarbons and less SO2, HCl, CO and NOx than coal-fired power plants, but more than natural gas fired power plants. According to Germany's Ministry of the Environment, waste incinerators reduce the amount of some atmospheric pollutants by substituting power produced by coal-fired plants with power from waste-fired plants.

Gaseous emissions

Dioxin and furans

The most publicized concerns from environmentalists about the incineration of municipal solid wastes (MSW) involve the fear that it produces significant amounts of dioxin and furan emissions. Dioxins and furans are considered by many to be serious health hazards.

In 2005, The Ministry of the Environment of Germany, where there were 66 incinerators at that time, estimated that "...whereas in 1990 one third of all dioxin emissions in Germany came from incineration plants, for the year 2000 the figure was less than 1 %. Chimneys and tiled stoves in private households alone discharge approximately 20 times more dioxin into the environment than incineration plants."

According to the United States Environmental Protection Agency, incineration plants are no longer significant sources of dioxins and furans. In 1987, before the governmental regulations required the use of emission controls, there was a total of 10,000 grams (350 oz) of dioxin emissions from US incinerators. Today, the total emissions from the 87 plants are only 10 grams (0.35 oz) yearly, a reduction of 99.9 %.

Backyard barrel burning of household and garden wastes, still allowed in some rural areas, generates 580 grams (20 oz) of dioxins yearly. Studies conducted by the US-EPA demonstrate that the emissions from just one family using a burn barrel produces more emissions than an incineration plant disposing of 200 metric tons (220 short tons) of waste per day.

Dioxin cracking methods and limitations

Generally, the breakdown of dioxin requires exposure of the molecular ring to a sufficiently high temperature so as to trigger thermal breakdown of the strong molecular bonds holding it together. Small pieces of fly ash may be somewhat thick, and too brief an exposure to high temperature may only degrade dioxin on the surface of the ash. For a large volume air chamber, too brief an exposure may also result in only some of the exhaust gases reaching the full breakdown temperature. For this reason there is also a time element to the temperature exposure to ensure heating completely through the thickness of the fly ash and the volume of waste gases.

There are trade-offs between increasing either the temperature or exposure time. Generally where the molecular breakdown temperature is higher, the exposure time for heating can be shorter, but excessively high temperatures can also cause wear and damage to other parts of the incineration equipment. Likewise the breakdown temperature can be lowered to some degree but then the exhaust gases would require a greater lingering period of perhaps several minutes, which would require large/long treatment chambers that take up a great deal of treatment plant space.

A side effect of breaking the strong molecular bonds of dioxin is the potential for breaking the bonds of nitrogen gas (N2) and oxygen gas (O2) in the supply air. As the exhaust flow cools, these highly reactive detached atoms spontaneously reform bonds into reactive oxides such as NOx in the flue gas, which can result in smog formation and acid rain if they were released directly into the local environment. These reactive oxides must be further neutralized with selective catalytic reduction (SCR) or selective non-catalytic reduction.

Dioxin cracking in practice

The temperatures needed to break down dioxin are typically not reached when burning of plastics outdoors in a burn barrel or garbage pit, causing high dioxin emissions as mentioned above. While plastic does usually burn in an open-air fire, the dioxins remain after combustion and either float off into the atmosphere, or may remain in the ash where it can be leached down into groundwater when rain falls on the ash pile.

Modern municipal incinerator designs include a high temperature zone, where the flue gas is ensured to sustain a temperature above 850 °C (1,560 °F) for at least 2 seconds before it is cooled down. They are equipped with auxiliary heaters to ensure this at all times. These are often fueled by oil, and normally only active for a very small fraction of the time.

For very small municipal incinerators, the required temperature for thermal breakdown of dioxin may be reached using a high-temperature electrical heating element, plus a selective catalytic reduction stage.

CO2

As for other complete combustion processes, nearly all of the carbon content in the waste is emitted as CO2 to the atmosphere. MSW contains approximately the same mass fraction of carbon as CO2 itself (27%), so incineration of 1 ton of MSW produces approximately 1 ton of CO2.

If the waste was landfilled, 1 ton of MSW would produce approximately 62 cubic metres (2,200 cu ft) methane via the anaerobic decomposition of the biodegradable part of the waste. This much methane has more than twice the global warming potential than the 1 ton of CO2, which would have been produced by incineration. In some countries, large amounts of landfill gas are collected, but still the global warming potential of the landfill gas emitted to atmosphere in the US in 1999 was approximately 32 % higher than the amount of CO2 that would have been emitted by incineration.

In addition, nearly all biodegradable waste has biological origin. This material has been formed by plants using atmospheric CO2 typically within the last growing season. If these plants are regrown the CO2 emitted from their combustion will be taken out from the atmosphere once more.

Such considerations are the main reason why several countries administrate incineration of the biodegradable part of waste as renewable energy. The rest – mainly plastics and other oil and gas derived products – is generally treated as non-renewables.

Different results for the CO2 footprint of incineration can be reached with different assumptions. Local conditions (such as limited local district heating demand, no fossil fuel generated electricity to replace or high levels of aluminum in the waste stream) can decrease the CO2 benefits of incineration. The methodology and other assumptions may also influence the results significantly. For example the methane emissions from landfills occurring at a later date may be neglected or given less weight, or biodegradable waste may not be considered CO2 neutral. A recent study by Eunomia Research and Consulting on potential waste treatment technologies in London demonstrated that by applying several of these (according to the authors) unusual assumptions the average existing incineration plants performed poorly for CO2 balance compared to the theoretical potential of other emerging waste treatment technologies.

Other emissions

Other gaseous emissions in the flue gas from incinerator furnaces include sulfur dioxide, hydrochloric acid, heavy metals and fine particles.

The steam content in the flue may produce visible fume from the stack, which can be perceived as a visual pollution. It may be avoided by decreasing the steam content by flue gas condensation and reheating, or by increasing the flue gas exit temperature well above its dew point. Flue gas condensation allows the latent heat of vaporization of the water to be recovered, subsequently increasing the thermal efficiency of the plant.

Flue gas cleaning

The quantity of pollutants in the flue gas from incineration plants is reduced by several processes.

Particulate is collected by particle filtration, most often electrostatic precipitators (ESP) and/or baghouse filters. The latter are generally very efficient for collecting fine particles. In an investigation by the Ministry of the Environment of Denmark in 2006, the average particulate emissions per energy content of incinerated waste from 16 Danish incinerators were below 2.02 g/GJ (grams per energy content of the incinerated waste). Detailed measurements of fine particles with sizes below 2.5 micrometres (PM2.5) were performed on three of the incinerators: One incinerator equipped with an ESP for particle filtration emitted 5.3 g/GJ fine particles, while two incinerators equipped with baghouse filters emitted 0.002 and 0.013 g/GJ PM2.5. For ultra fine particles (PM1.0), the numbers were 4.889 g/GJ PM1.0 from the ESP plant, while emissions of 0.000 and 0.008 g/GJ PM1.0 were measured from the plants equipped with baghouse filters.

Acid gas scrubbers are used to remove hydrochloric acid, nitric acid, hydrofluoric acid, mercury, lead and other heavy metals. Basic scrubbers remove sulfur dioxide, forming gypsum by reaction with lime.

Waste water from scrubbers must subsequently pass through a waste water treatment plant.

Sulfur dioxide may also be removed by dry desulfurisation by injection limestone slurry into the flue gas before the particle filtration.

NOx is either reduced by catalytic reduction with ammonia in a catalytic converter (selective catalytic reduction, SCR) or by a high temperature reaction with ammonia in the furnace (selective non-catalytic reduction, SNCR). Urea may be substituted for ammonia as the reducing reagent but must be supplied earlier in the process so that it can hydrolyze into ammonia. Substitution of urea can reduce costs and potential hazards associated with storage of anhydrous ammonia.

Heavy metals are often adsorbed on injected active carbon powder, which is collected by the particle filtration.

Solid outputs

Incineration produces fly ash and bottom ash just as is the case when coal is combusted. The total amount of ash produced by municipal solid waste incineration ranges from 4-10 % by volume and 15-20 % by weight of the original quantity of waste, and the fly ash amounts to about 10-20 % of the total ash. The fly ash, by far, constitutes more of a potential health hazard than does the bottom ash because the fly ash often contain high concentrations of heavy metals such as lead, cadmium, copper and zinc as well as small amounts of dioxins and furans. The bottom ash seldom contain significant levels of heavy metals. In testing over the past decade, no ash from an incineration plant in the USA has ever been determined to be a hazardous waste. At present although some historic samples tested by the incinerator operators' group would meet the being ecotoxic criteria at present the EA say "we have agreed" to regard incinerator bottom ash as "non-hazardous" until the testing programme is complete.

Other pollution issues

Odor pollution can be a problem with old-style incinerators, but odors and dust are extremely well controlled in newer incineration plants. They receive and store the waste in an enclosed area with a negative pressure with the airflow being routed through the boiler which prevents unpleasant odors from escaping into the atmosphere. However, not all plants are implemented this way, resulting in inconveniences in the locality.

An issue that affects community relationships is the increased road traffic of waste collection vehicles to transport municipal waste to the incinerator. Due to this reason, most incinerators are located in industrial areas. This problem can be can avoided to an extent through the transport of waste by rail from transfer stations.